编程题

愤怒的小鸟

【问题描述】

Kiana 最近沉迷于一款神奇的游戏无法自拔。

简单来说,这款游戏是在一个平面上进行的。

有一架弹弓位于 (0,0) 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如 y=ax^2+bx 的曲线,其中 a,b 是 Kiana 指定的参数,且必须满足 a<0。

当小鸟落回地面(即x轴)时,它就会瞬间消失。

在游戏的某个关卡里,平面的第一象限中有 n 只绿色的小猪,其中第 i 只小猪所在的坐标为 (xi,yi) 。

如果某只小鸟的飞行轨迹经过了(xi,yi),那么第 i 只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;

如果一只小鸟的飞行轨迹没有经过(xi,yi),那么这只小鸟飞行的全过程就不会对第 i 只小猪产生任何影响。

例如,若两只小猪分别位于 (1,3) 和 (3,3) ,Kiana 可以选择发射一只飞行轨迹为 y=-x^2+4x 的小鸟,这样两只小猪就会被这只小鸟一起消灭。

而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。

这款神奇游戏的每个关卡对 Kiana 来说都很难,所以 Kiana 还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。

假设这款游戏一共有 T 个关卡,现在 Kiana 想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。

【输入格式】

从文件angrybirds.in中读入数据

第一行包含一个正整数T,表示游戏的关卡总数。

下面依次输入这T个关卡的信息,每个关卡第一行包含两个非负整数 n,m ,分别表示该关卡中的小猪数量和 Kiana 输入的神秘指令类型。接下来的 n 行中,第 i 行包含两个正实数 xi,yi ,表示第 i 只小猪坐标为 (xi,yi)。数据保证同一个关卡中不存在两只坐标完全相同的小猪。

如果 m=0,表示 Kiana 输入了一个没有任何作用的指令。

如果 m=1 ,则这个关卡将会满足:至多用只小鸟即可消灭所有小猪。

如果 m=2 ,则这个关卡将会满足:一定存在一种最优解,其中有一只小鸟消灭了至少只小猪。

保证 1≤n≤18,0≤m≤2,0<xi,yi<10,输入中的实数均保留到小数点后两位。

【输出格式】

输出到文件angrybirds.out中。

对每个关卡依次输出一行答案。

输出的每一行包含一个正整数,表示相应的关卡中,消灭所有小猪最少需要的小鸟数量。

【样例1输入】

2

2 0

1.00 3.00

3.00 3.00

5 2

1.00 5.00

2.00 8.00

3.00 9.00

4.00 8.00

5.00 5.00

【样例1输出】

1

1

【样例1说明】

这组数据中一共有两个关卡。

第一个关卡与【问题描述】中的情形相同,2 只小猪分别位于 (1.00,3.00) 和 (3.00,3.00) ,只需发射一只飞行轨迹为 y=-x^2+4x 的小鸟即可消灭它们。

第二个关卡中有 5 只小猪,但经过观察我们可以发现它们的坐标都在抛物线 y=-x^2+6x 上,故 Kiana 只需要发射一只小鸟即可消灭所有小猪。

【样例2输入】

3

2 0

1.41 2.00

1.73 3.00

3 0

1.11 1.41

2.34 1.79

2.98 1.49

5 0

2.72 2.72

2.72 3.14

3.14 2.72

3.14 3.14

5.00 5.00

【样例2输出】

2

2

3

【样例3输入】

1

10 0

7.16 6.28

2.02 0.38

8.33 7.78

7.68 2.09

7.46 7.86

5.77 7.44

8.24 6.72

4.42 5.11

5.42 7.79

8.15 4.99

【样例3输出】

6

【子任务】

数据的一些特殊规定如下表:

查看答案
赣ICP备20007335号-2