编程题
### 问题描述
在一个宁静的庭院中,一位园艺师以三块石板构建了一个三角形水池 $ABC$,并在其中安置了一个喷泉,位于三角形的内心 $I$。他记录下了石板与喷泉之间的关系:石板 $AB$ 的长度为 $5$,喷泉水流沿着 $AI$ 落入水池的 $BC$ 边界上的某点 $D$,其中 $AI:CD = 5:4$,且 $AD$ 与 $BD$ 两水流的乘积为 $8$。
园艺师想要计算水池的表面积,但他只带了一把尺子而忘记了计算器。现在,他需要你的帮助来计算这个三角形水池的面积。
请你帮助园艺师计算出三角形 $ABC$ 的面积。已知该面积可以表示为互质的正整数 $a, c$ 和无平方因子的正整数 $b$ 的形式 $\frac{a \sqrt{b}}{c}$,你只需找出 $a + b + c$ 的值即可。
### 输入格式
无。
### 输出格式
输出一个整数,表示三角形 $ABC$ 的面积表示为 $\frac{a \sqrt{b}}{c}$ 时,$a + b + c$ 的值。
### 说明
**本题为填空题,只需要算出结果后,在代码中使用输出语句将结果输出即可。**