编程题
### 问题描述 在古时的传说中,隐藏着一种神秘的数学现象。这个现象与正整数 $n$ 的立方数有关。 对于正整数 $n$,存在一个整数 $x$ 满足 $1 < x < n$,并且 $x^3 \equiv 1 \ (\text{mod} \ n)$。我们将满足这一条件的整数 $x$ 的数目记为 $C(n)$。 例如,当 $n=91$ 时,存在 8 个满足条件的整数 $x$,分别是:9、16、22、29、53、74、79、81。因此,$C(91) = 8$。 现在的问题是:找出所有满足 $C(n) = 242$ 的正整数 $n$,且 $n \leq 10^{11}$,并计算它们的和。 ### 输入格式 无。 ### 输出格式 输出一个整数,表示满足条件的正整数 $n$ 的和。 ### 说明 **本题为填空题,只需要算出结果后,在代码中使用输出语句将结果输出即可。**
查看答案
赣ICP备20007335号-2