编程题
华容道
### 题目描述
小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次。于是,他想到用编程来完成华容道:给定一种局面,华容道是否根本就无法完成,如果能完成,最少需要多少时间。
小 B 玩的华容道与经典的华容道游戏略有不同,游戏规则是这样的:
1. 在一个 $n\times m$ 棋盘上有 n\times m$ 个格子,其中有且只有一个格子是空白的,其余 $n\times m-1$ 个格子上每个格子上有一个棋子,每个棋子的大小都是 $1 \times 1 的;
2. 有些棋子是固定的,有些棋子则是可以移动的;
3. 任何与空白的格子相邻(有公共的边)的格子上的棋子都可以移动到空白格子上。
游戏的目的是把某个指定位置可以活动的棋子移动到目标位置。
给定一个棋盘,游戏可以玩 $q$ 次,当然,每次棋盘上固定的格子是不会变的,但是棋盘上空白的格子的初始位置、指定的可移动的棋子的初始位置和目标位置却可能不同。第 i 次玩的时候,空白的格子在第 $EX_i$ 行第 $EY_i$ 列,指定的可移动棋子的初始位置为第 $SX_i$ 行第 $SY_i$ 列,目标位置为第 $TX_i$ 行第 $TY_i$ 列。
假设小 B 每秒钟能进行一次移动棋子的操作,而其他操作的时间都可以忽略不计。请你告诉小
B 每一次游戏所需要的最少时间,或者告诉他不可能完成游戏。
### 输入描述
第一行有 3 个整数,每两个整数之间用一个空格隔开,依次表示 $n、m$ 和 $q$;
接下来的 $n$ 行描述一个 $n\times m$ 的棋盘,每行有 $m$ 个整数,每两个整数之间用一个空格隔开,每个整数描述棋盘上一个格子的状态,0 表示该格子上的棋子是固定的,1 表示该格子上的棋子可以移动或者该格子是空白的。
接下来的 $q$ 行,每行包含 6 个整数依次是 $EX_i、EY_i、SX_i、SY_i、TX_i、TY_i$,每两个整数之间用一个空格隔开,表示每次游戏空白格子的位置,指定棋子的初始位置和目标位置。
其中,$1 \leq n, m \leq 30,q \leq 500$。
### 输出描述
输出有 $q$ 行,每行包含 1 个整数,表示每次游戏所需要的最少时间,如果某次游戏无法完成目标则输出 −1。
### 输入输出样例
#### 示例
> 输入
```txt
3 4 2
0 1 1 1
0 1 1 0
0 1 0 0
3 2 1 2 2 2
1 2 2 2 3 2
```
> 输出
```txt
2
-1
```